Iz e-ELEKTROTEHNIKA plus
(Primerjava redakcij)
m (1 revision) |
|||
Vrstica 15: | Vrstica 15: | ||
<latex>G^\prime \, =\, \mathop {\lim }\limits_{\Delta t \to 0} \frac{G({t^*}\, +\, \Delta t) \,-\, G(t)}{\Delta t}\, =\, \mathop {\lim }\limits_{\Delta t \to 0} \frac{f({t^*}\, +\, \Delta t)\Delta t}{\Delta t} \,=\, \mathop {\lim }\limits_{\Delta t \to 0} f({t^*}\, +\, \Delta t) \,=\, f({t^*}).</latex> | <latex>G^\prime \, =\, \mathop {\lim }\limits_{\Delta t \to 0} \frac{G({t^*}\, +\, \Delta t) \,-\, G(t)}{\Delta t}\, =\, \mathop {\lim }\limits_{\Delta t \to 0} \frac{f({t^*}\, +\, \Delta t)\Delta t}{\Delta t} \,=\, \mathop {\lim }\limits_{\Delta t \to 0} f({t^*}\, +\, \Delta t) \,=\, f({t^*}).</latex> | ||
- | Odvod funkcije ''G'' v ''t''<sup>*</sup> je enak funkcijski vrednosti funkcije ''f'' v ''t''<sup>*</sup>, pri tem pa je ''t''<sup>*</sup> ∈ [''t''<sub>0</sub>, ''t''<sub>1</sub>]. Izkoristimo | + | Odvod funkcije ''G'' v ''t''<sup>*</sup> je enak funkcijski vrednosti funkcije ''f'' v ''t''<sup>*</sup>, pri tem pa je ''t''<sup>*</sup> ∈ [''t''<sub>0</sub>, ''t''<sub>1</sub>]. Izkoristimo priložnost in izpostavimo glavne lastnosti določnega integrala kot funkcije zgornje meje: |
<latex>{G({t^*})\, =\, \int\limits_{t_0}^{t^*} {f(t){\rm{d}}t} \,\,\,\,\,{\rm{ }} \Rightarrow\,\,\,\,\, {\rm{ }}G({t_0})\, =\, 0\,\,\,\,\,{\rm{ in }}\,\,\,\,\,G({t_1}) \,=\, \int\limits_{t_0}^{t_1} {f(t){\rm{d}}t}\,\,\,\,\, {\rm{ ter }}\,\,\,\,\,G^\prime (t)\, =\, f(t).}</latex> | <latex>{G({t^*})\, =\, \int\limits_{t_0}^{t^*} {f(t){\rm{d}}t} \,\,\,\,\,{\rm{ }} \Rightarrow\,\,\,\,\, {\rm{ }}G({t_0})\, =\, 0\,\,\,\,\,{\rm{ in }}\,\,\,\,\,G({t_1}) \,=\, \int\limits_{t_0}^{t_1} {f(t){\rm{d}}t}\,\,\,\,\, {\rm{ ter }}\,\,\,\,\,G^\prime (t)\, =\, f(t).}</latex> | ||
{{Hierarchy footer}} | {{Hierarchy footer}} |
Redakcija: 09:28, 8. junij 2010
Ali znamo reči kaj o odvodu funkcije G v točki t* oziroma o limiti naslednjega kvocienta:
Iz lastnosti integrala izhaja, da je števec v resnici določen integral funkcije f od t* do t* + Δt, saj je
in da je iskan odvod možno izraziti takole:
Preostali določen integral se naslavlja na kar najkrajši interval Δt; če je tako, ustreza približni vrednosti integrala morda že kar produkt f(t* + Δt) Δt, če je le Δt dovolj majhen. Sledi odgovor:
Odvod funkcije G v t* je enak funkcijski vrednosti funkcije f v t*, pri tem pa je t* ∈ [t0, t1]. Izkoristimo priložnost in izpostavimo glavne lastnosti določnega integrala kot funkcije zgornje meje:
5.4.1 Določen integral kot funkcija zgornje meje | 5.5 Nedoločen integral funkcije |