e
ELEKTROTEHNIKA
plus

Iz e-ELEKTROTEHNIKA plus

(Primerjava redakcij)
Skoči na: navigacija, iskanje
m (1 revision)
 
(One intermediate revision not shown)
Vrstica 1: Vrstica 1:
-
Če smo našli funkcijo ''F'', katere odvod je ''f'', je z njo določena funkcija ''G''; določena je vrednost ''G''(''t''<sub>1</sub>) in tudi vrednost določenega integrala ''I'', s katerim smo integriranje začeli:
+
Če smo našli funkcijo ''F'', katere odvod je ''f'', je z njo določena funkcija ''G''. Določena je vrednost ''G''(''t''<sub>1</sub>) in tudi vrednost določenega integrala ''I'', s katerim smo integriranje začeli:
<latex>G(t)\, = \,F(t)\, -\, F({t_0}){\rm{ }}\,\,\,\,\, \Rightarrow \,\,\,\,\,{\rm{ }}G({t_1})\, = \,F({t_1})\, -\, F({t_0})\, =\, \int\limits_{t_0}^{t_1} {f(t){\rm{d}}t} \, =\, I.</latex>
<latex>G(t)\, = \,F(t)\, -\, F({t_0}){\rm{ }}\,\,\,\,\, \Rightarrow \,\,\,\,\,{\rm{ }}G({t_1})\, = \,F({t_1})\, -\, F({t_0})\, =\, \int\limits_{t_0}^{t_1} {f(t){\rm{d}}t} \, =\, I.</latex>

Trenutna redakcija s časom 09:30, 8. junij 2010

Če smo našli funkcijo F, katere odvod je f, je z njo določena funkcija G. Določena je vrednost G(t1) in tudi vrednost določenega integrala I, s katerim smo integriranje začeli:

Od funkcije G, ki nam je veliko pomagala, se sedaj »poslovimo« in sklenimo:

Določen integral I funkcije f na intervalu [t0, t1] izračunamo tako, da najdemo funkciji f njen nedoločen integral F, zatem pa tvorimo še razliko funkcijskih vrednosti funkcije F na zgornji in na spodnji integracijski meji.



5.5 Nedoločen integral funkcije 5.7 Odvodi in integrali nekaterih elementarnih funkcij

Osebna orodja