m |
|
Vrstica 1: |
Vrstica 1: |
- | <flvplayertwo>Eele video test 001 vpliv frekvence na tok skozi kondenzator.flv</flvplayertwo> | + | <latex> |
- | | + | {\underline Y = \frac{1}{ {\underline Z } } = \frac{1}{ {\left| {\underline Z } \right|{\mathrm {e} } ^{ {\mathrm{j} }\phi } } } = \frac{ {I_{\mathrm{m} } } }{ {U_{\mathrm{m} } } }{\mathrm {e} } ^{ - {\mathrm{j} }\phi } = \left| {\underline Y } \right|{\mathrm {e} } ^{ - {\mathrm{j} }\phi } = \left| {\underline Y } \right|\left( {\cos \phi - {\mathrm{j} }\sin \phi } \right).} |
- | <flvplayertwo>Eele_video_test_001_Napetosti_v_zaporedni_vezavi_R_in_L.flv</flvplayertwo>
| + | </latex> |
- | | + | |
- | <flvplayertwo>Eele_video_test_001_realnega_transformatorja_pri_kratkem_stiku.flv</flvplayertwo>
| + | |
- | | + | |
- | | + | |
- | <latex>X_{ {\mathrm{L2} } } = 2 \pi f_2 L = {\mathrm{2} } \cdot {\mathrm{3,14} } \cdot 400{\mathrm{ Hz} } \cdot {\mathrm{25,5} } \cdot {\mathrm{1} }0^{-{\mathrm{3} } } {\mathrm{ H} } = 64{\mathrm{ } }\Omega</latex>
| + | |
- | | + | |
- | | + | |
- | <latex>\Phi = \frac{1 + \sqrt{5}}{2} \approx 1,61803398874989484... </latex>
| + | |
- | <latex>u \, = \, I_R \, + \, u_C</latex>
| + | |
- | <latex>\underline U = \underline Z \underline I {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline I _{ {\mathrm{12} } } = \underline Y _{12} \underline U {\mathrm{, } }\underline I _{\mathrm{3} } = \underline Y _3 \underline U {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline U _1 = \underline Z _1 \underline I _{ {\mathrm{12} } } {\mathrm{, } }\underline U _2 = \underline Z _2 \underline I _{ {\mathrm{12} } } .</latex>
| + | |
- | <latex>u \, = \, I_R \, + \, u_L</latex>
| + | |
- | <latex>\underline U = \underline Z \underline I {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline I _{ {\mathrm{12} } } = \underline Y _{12} \underline U {\mathrm{, } }\underline I _{\mathrm{3} } = \underline Y _3 \underline U {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline U _1 = \underline Z _1 \underline I _{ {\mathrm{12} } } {\mathrm{, } }\underline U _2 = \underline Z _2 \underline I _{ {\mathrm{12} } } .</latex>
| + | |
- | <latex>u \, = \, I_R \, + \, u_L</latex>
| + | |
- | <latex>\underline U = \underline Z \underline I {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline I _{ {\mathrm{12} } } = \underline Y _{12} \underline U {\mathrm{, } }\underline I _{\mathrm{3} } = \underline Y _3 \underline U {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline U _1 = \underline Z _1 \underline I _{ {\mathrm{12} } } {\mathrm{, } }\underline U _2 = \underline Z _2 \underline I _{ {\mathrm{12} } } .</latex>
| + | |
- | <latex>\underline UASD = \underline Z \underline I {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline I _{ {\mathrm{12} } } = \underline Y _{12} \underline U {\mathrm{, } }\underline I _{\mathrm{3} } = \underline Y _3 \underline U {\mathrm{ } } \Rightarrow {\mathrm{ } }\underline U _1 = \underline Z _1 \underline I _{ {\mathrm{12} } } {\mathrm{, } }\underline U _2 = \underline Z _2 \underline I _{ {\mathrm{12} } } .</latex>
| + | |
- | <latex>{G({t^*}) \,=\, \int\limits_{t_0}^{t^*} {f(t){\rm{d}}t} .}</latex>
| + | |
- | <pomembno>
| + | |
- | *Količine z '''enakomerno '''ponavljajočo se časovno odvisnostjo spreminjanja (sl. 1.3 a, b, c) imenujemo '''periodične '''količine.
| + | |
- | *Količine z '''neponavljajočo '''se časovno odvisnostjo spreminjanja (sl. 1.3 d) imenujemo '''neperiodične '''količine. <br>
| + | |
- | </pomembno>
| + | |
- | | + | |
- | [[Image:OET2_a_poglavje_10_slika_08.svg|thumb|right|Kazalca napetosti in toka na kompleksnem elementu ter kazalca njegovih imitanc.]]
| + | |
- | [[Image:slika.jpg|thumb|right|Kazalca napetosti in toka na kompleksnem elementu ter kazalca njegovih imitanc.]]
| + | |
- | [[Image:OET2_a_poglavje_20_slika_04.svg|thumb|right|Kazalca napetosti in toka na kompleksnem elementu ter kazalca njegovih imitanc.]]
| + | |
- | [[Image:OET2_a_poglavje_20_slika_05.svg|thumb|left|Kazalca napetosti in toka na kompleksnem elementu ter kazalca njegovih imitanc.]]
| + | |
- | <poskus>asfkasdbwekfbwekjbfgvak</poskus>
| + | |