e
ELEKTROTEHNIKA
plus

Iz e-ELEKTROTEHNIKA plus

Skoči na: navigacija, iskanje
Slika:OET2 a poglavje 51 slika 01.svg
Nadomestno vezje, ki ustreza idealiziranemu oziroma brezizgubnemu transformatorju.
Slika:OET2 a poglavje 52 slika 02.svg
Označevanje elementov in kompleksnih količin v primeru vezja magnetno sklopljenih tuljav.
Slika:OET2 a poglavje 52 slika 03.svg
Transformator je posrednik med virom in bremenom.

Transformator je naprava, ki ima nekaj lepih električnih lastnosti; zaradi njih ni nepogrešljiv le pri distribuciji električne energije, ampak tudi v elektroniki. Zasnovo transformatorja smo predstavili v okviru magnetnih vezjih, njegovo idealizirano nadomestno vezje in ustrezni enačbi pa v okviru sklopljenih tuljav. Modela brezizgubnega transformatorja se bomo v nadaljevanju tudi oprijeli in poskušali iz njega prepoznati lastnosti, ki transformator odlikujejo (slika 1).[1]


Prikličimo enačbi, ki vežeta toka in napetosti magnetno sklopljenih navitij:


in


Če smo osredotočeni na harmonične razmere, potem bi kazalo enačbi zapisati v kompleksni obliki, s kazalci. Poskusimo. Izkušnja z enačbo tuljave,



razkriva podobnost med časovnim in kompleksnim zapisom: napetost preide v kazalec napetosti, hitrost spreminjanja toka pa v kazalec toka, multipliciran z
(induktivnost je le multiplikator). Kar velja zanjo, mora smiselno veljati tudi za enačbo z več podobnimi sumandi. Če je tako, potem sta:


in


V modelnem vezju spremenimo temu ustrezno tudi oznake: toka in napetosti zamenjajo njihovi kazalci, induktivnosti nadomestijo z j množene reaktance in
je medsebojna reaktanca navitij, piki zadržita svoj pomen (slika 2). Nič kaj drugače ni pri transformatorju oziroma popolnem sklopu dveh navitij na visokopermeabilnem jedru. V enačbi kaže vplesti preproščino, da so izrazi za induktivnosti podobni in določeni z magnetno upornostjo jedra (
) in številoma ovojev navitij (
in
) ter da je medsebojna induktivnost (
) enaka geometrijski srednji vrednosti lastnih induktivnosti (
in
):


in


Transformator kot dvovhodno vezje je neke vrste elektromagnetni posrednik med tokokrogoma oziroma med deloma vezja (slika 3). Njuni sestavini za sam transformator sicer nista pomembni, je pa pogosto tako, da ima del vezja generatorski, drugi del pa bremenski značaj. Navitje, na katero priključimo vir ali drugo aktivno vezje, imenujemo primar, navitje kamor priključimo breme, pa sekundar transformatorja. Pri izbrani priključitvi bremena (impedance Zb) prek transformatorja na vir harmonične napetosti (ki ji ustreza kazalec Ug), se enačbama navitij pridružita še enačbi, ki povzemata ničin priključitve:


in



Iz teh enačb bomo poskušali v nadaljevanju pridobiti kar največ informacij, predvsem tistih, ki jih zaznamujeta magnetno sklopljeni navitji.


Prestavno razmerje

Prvo značilnost transformatorja dobimo, ko med seboj delimo kazalca napetosti navitij in upoštevamo izraze za induktivnosti:



Verjetno preseneča dejstvo, da sta kazalca napetosti navitj v razmerju števila ovojev (zgolj to in nič več):



Število n je prestavno razmerje. Primer. Razmerje med števili ovojev navitij transformatorja naj bo pet. Ob priključitvi enega od njih na omrežno napetost efektivne vrednosti 230 V bi med sponkama drugega navitja mogli izmeriti napetost efektivne vrednosti 230 V / 5 = 46 V ali pa 230 V × 5 = 1150 V; odvisno od tega, katero od navitij bi bilo primarno.


Sekundarni tok

Če je temu tako, potem sta v enakem razmerju tudi kazalca napetosti vira in napetosti bremena, iz česar sledi izraz za kazalec toka skozi breme:



Preseneča, da je tok bremena povsem neodvisen od reaktanc transformatorja.


Primarni tok

Iz napetostne enačbe drugega navitja izrazimo primarni tok. Ko vanj vpletemo še prestavo, dobimo:



Kaj vidimo? Primarni tok oblikuje vsota dveh sumandov: prvega določata kazalec napetosti in impedanca primarja, drugega pa kazalec toka v bremenu. V nadaljevanju bomo spoznali, da ima vsak od njiju določen fizikalni pomen.


Magnetilni in ravnotežni tok

Jedro transformatorja vzbujata dve magnetni napetosti (N1I1 in N2I2); glede na oznaki tokov (I1 in I2) skozi navitji (v piki) se magnetni napetosti podpirata. Kazalec rezultančne magnetne napetosti,



je povsem neodvisen od sekundarnega toka, sicer pa tolikšen, kot da bi jedro magnetil le prvi del primarnega toka, magnetna napetost drugega dela toka pa bi pri tem zgolj držala ravnotežje z magnetno napetostjo sekundarnega toka; to dvoje je razlog, da prvi del primarnega toka imenujemo magnetilni tok I1m, drugega pa ravnotežni tok (I1r):


in


Kazalčni diagram vezja

Slika:OET2 a poglavje 52 slika 04.svg
Kazalčni diagram tokov in napetosti transformatorja.
Ugotovitve še najlepše povzame kazalčni diagram (slika 4). Risanje se odvija takole: izberemo lego kazalca U1; n = 2, kazalec U2 je sofazen kazalcu U1, kazalec toka I1m zaostaja za U1 za 90 °, Zb naj bo induktivnega značaja, kazalec toka (–I2) zaostaja za kot
za U2, kazalec ravnotežnega toka I1r je sofazen z (–I2), kazalec toka I1 je enak vsoti kazalcev I1m in I1r. To je vse.


Moči transformatorja

Slika:OET2 a poglavje 52 slika 05.svg
Kazalčni diagram moči transformacije.

Vhodno kompleksno moč S1 (moč v transformator) določata kazalca primarne napetosti in toka; glede na izpisane relacije sledi:




Vhodna kompleksna moč je enak vsoti dveh: v prvi prepoznamo imaginarno moč magnetenja jedra (j
1m), v drugi pa kompleksno moč bremena (Sb):


in


Vhodna delovna moč je enaka delovni moči bremena, vhodna jalova moč pa je za jalovo moč magnetenja jedra večja kot jalova moč bremena (slika 5).


Transformacije

Ustavimo se ob transformacijah oziroma pretvorbah, ki jih ponuja transformator.


1) Prva je zajeta v prestavnem razmerju n = N1 / N2: v tem, da zmore transformator harmonično napetost z nižjega pretvoriti na višji nivo in obratno. Ta možnost je resnično dobrodošla in jo pogosto koristimo. Primer. Na voljo imamo omrežno (sinusno) napetost, ampak nam nivo 230 V ne ustreza; želimo višjo (ali nižjo) napetost za napajanje naprave. Nič lažjega: med omrežje in breme vežemo transformator, ki ima primerno razmerje n in težava je rešena.


2) Drugo pretvorbo transformatorja zasledimo v relacijah med kazalci tokov in delnih tokov v navitjih:



Tudi razmerje kazalcev ravnotežnega in sekundarnega toka določa prestavno razmerje, in sicer, da navitju z večjim številom ovojev pripada manjši tok, in obratno, in da sta si ta toka (zaradi minusa) protifazna.


3) Tretja pretvorba se dotika tako kompleksnih moči kot kazalca primarnega toka:



Razmerje med imaginarno močjo magnetenja in kompleksno močjo bremena je enako razmerju med kazalcem magnetilnega in kazalcem ravnotežnega toka. Pri projektiranju transformatorja stremimo, da je razmerje čim manjše,



da je delež magnetilnega v primarnem toku čim manjši.[2] To dosežmo, ko je



oziroma ko reaktanca sekundarnega navitja zelo preseže absolutno vrednost impedance bremena. Če to dosežemo, velja naslednje:



4) Četrta pretvorba je pretvorba impedance bremena v vhodno impedanco. Če magnetilni tok zanemarimo, potem je impedanca navideznega bremena enaka kvocientu kazalca napetosti vira in kazalca primarnega toka:



Transformator torej transformira tudi impedanco bremena. Pri prestavi pet in bremenski impedanci (2 – j3)
je vrednost impedance navideznega bremena (50 – j75)
. Ta možnost je aktualna v elektroniki.


Idealni transformator

Slika:OET2 a poglavje 52 slika 06.svg
Označevanje simbola idealnega transformatorja.

Obravnavani transformator je bil idealiziran, brez izgub in popolno sklopljenih navitij, idealni pa bi bil tisti, katerega jedro bi imelo neskončno permeabilnost (Rm = 0) oziroma neskončne induktivnosti, da bi bila nična tako magnetilni tok kot moč za magnetenje jedra. Podatek idealnega transformatorja sta v tem primeru števili N1 in N2 oziroma razmerje n. Električni simbol idealnega transformatorja je identičen prejšnjemu, le da impedance smiselno zamenjata števili ovojev (slika 6). Njegovi enačbi sta v resnici le dve, napetostna in tokovna:


in


Razmerje napetosti določa prestavno razmerje, razmerje protifaznih tokov pa recipročna vrednost prestavnega razmerja. Ko idealni transformator povezuje breme z virom, veljata še enačbi:[3]


in


da sta vhodni in izhodni kompleksni moči enaki in da se impedanca bremena transformira na vhod s kvadratom prestave.


Uporaba transformatorja

Transformator zmore vhodno energijo praktično v celoti prenesti na sekundarno stran; pri tem med primarjem in sekundarjem zamenja nivo napetosti v razmerju prestave (n), nivo toka pa v razmerju (n–1). Brez te možnosti, ki jo ponuja transformator, bi bil prenos električne energije na daljavo zelo drag. Zakaj? Inducirane napetosti sinhronskih generatorjev v elektrarnah so velikosti kV. Pri moči 300 MW bi morali biti preseki daljnovodnih žic debeline (dm)2, česar ne bi prenesli niti stebri in še manj ekonomija. Odgovor je tu: na strani generatorja je potrebno postaviti transformator, ki kV napetost pretvori na 100 kV, 100 kA tok pa na nivo kA, potrebne daljnovodne vrvi so zaradi tega tanjše, lažje in cenejše. Na strani porabnikov je potrebno zadevo ponoviti v nasprotno smer: od višje k nižji napetosti.


Opombe

  1. Brezizgubnost navitij in jedra sta predpostavki idealiziranega transformatorja. Razen izjem smemo odstopanje od realnega stanja scela spregledati.
  2. V normalnem obratovanju transformatorja naj bi bila absolutna vrednost magnetilnega toka manjša od odstotka absolutne vrednosti primarnega toka.
  3. S pomočjo idealnega transformatorja moremo oblikovati še drugačno nadomestno vezje brezizgubnega transformatorja: vzporedno k primarnemu navitju idealnega transformatorja pridružimo tuljavo z induktivnostjo primarnega navitja. Primarni tok se v tem primeru deli v magnetilni skozi tuljavo in v ravnotežni skozi primar idealnega transformatorja (torej v smislu izraza za primarni tok).


Podpoglavja:


3.6 Tokovni generator 3.7.1 Prestavno razmerje

Osebna orodja