Iz e-ELEKTROTEHNIKA plus
(Primerjava redakcij)
Vrstica 1: | Vrstica 1: | ||
- | Imejmo časovno funkcijo <latex>f(t)</latex>, ki podaja napetost, morda moč, tok, naboj ali energijo (slika 1). Izberimo bližnja trenutka <latex>t</latex> in <latex>t+\Delta t</latex>. Upati smemo, da si bosta blizu tudi funkcijski vrednosti | + | Imejmo časovno funkcijo <latex>f(t)</latex>, ki podaja napetost, morda moč, tok, naboj ali energijo (slika 1). Izberimo bližnja trenutka <latex>t</latex> in <latex>t+\Delta t</latex>. Upati smemo, da si bosta blizu tudi funkcijski vrednosti <latex>f(t)</latex> in <latex>f(t+\Delta t)</latex>. Prirastek Δ''f'' = ''f''(''t'' + Δ''t'') - ''f''(''t'') je pomemben, verjetno pa tudi kvocient Δ''f'' / Δ''t'', ki ugotavlja hitrost spreminjanja funkcije ''f''. Informacija o njej bo najboljša takrat, ko bo interval Δ''t'' kar najkrajši, ko bo Δ''t'' ''limitiral'' k nič, kar povzema zapis: Δ''t'' → 0. Če bo tako, se bo nekaj limitnega dogajalo tudi s kvocientom Δ''f'' / Δ''t''. Ko se bo manjšal imenovalec Δ''t'', se bo z njim manjšal tudi števec Δ''f'', in upamo lahko, da bo k neki vrednosti limitiral tudi njun kvocient. Vrednost, h kateri stremi, imenujemo ''odvod funkcije'' ''f'' ob času ''t''. Odvod pišemo takole: |
Redakcija: 19:02, 12. julij 2010
Imejmo časovno funkcijo
Znak »lim« je okrajšava za limito, znak razlike »Δ« pa preide v diferencialni znak »d«. Novi, infinitezimalni količini dt in df sta diferenciala neodvisne in odvisne spremenljivke. Ker je odvod funkcije f v splošnem tudi funkcija, se za odvod uporablja tudi nekvocientni zapis »f′«. Diferencial df določa torej produkt odvoda f′ in diferenciala dt.
Najpreprostejša je konstantna funkcija: g(t) = C. Upodablja jo premica, ki je vzporedna abscisni osi. Pri vsakem intervalu Δt je Δg = 0, odvod konstante je nič. Odvod linearne funkcije h(t) = kt + n je h′ = k, saj je Δh = kΔt; o drugih več kasneje. Izpostavimo tudi nekaj lastnosti odvoda, te izhajajo iz definicije: (af)′ = af′ in (f + g)′ = f′ + g′ ter f(g)′ = f′g′.
Podpoglavja:
5.2 Kako analizirati prehodni pojav | 5.3.1 Časovni odvodi in diferenciali v elektrotehniki |