Iz e-ELEKTROTEHNIKA plus
(Primerjava redakcij)
Vrstica 1: | Vrstica 1: | ||
- | Imejmo časovno funkcijo <latex>f(t)</latex>, ki podaja napetost, morda moč, tok, naboj ali energijo (slika 1). Izberimo bližnja trenutka <latex>t</latex> in <latex>t+\Delta t</latex>. Upati smemo, da si bosta blizu tudi funkcijski vrednosti <latex>f(t)</latex> in <latex>f(t+\Delta t)</latex>. Prirastek <latex>\Delta f=f(t+\Delta t)-f(t)</latex> je pomemben, verjetno pa tudi kvocient <latex>\Delta f/\Delta t</latex>, ki ugotavlja hitrost spreminjanja funkcije <latex>f</latex>. Informacija o njej bo najboljša takrat, ko bo interval <latex>\Delta t</latex> kar najkrajši, ko bo <latex>\Delta t</latex> ''limitiral'' k nič, kar povzema zapis: <latex>\Delta t \to 0</latex>. Če bo tako, se bo nekaj limitnega dogajalo tudi s kvocientom | + | Imejmo časovno funkcijo <latex>f(t)</latex>, ki podaja napetost, morda moč, tok, naboj ali energijo (slika 1). Izberimo bližnja trenutka <latex>t</latex> in <latex>t+\Delta t</latex>. Upati smemo, da si bosta blizu tudi funkcijski vrednosti <latex>f(t)</latex> in <latex>f(t+\Delta t)</latex>. Prirastek <latex>\Delta f=f(t+\Delta t)-f(t)</latex> je pomemben, verjetno pa tudi kvocient <latex>\Delta f/\Delta t</latex>, ki ugotavlja hitrost spreminjanja funkcije <latex>f</latex>. Informacija o njej bo najboljša takrat, ko bo interval <latex>\Delta t</latex> kar najkrajši, ko bo <latex>\Delta t</latex> ''limitiral'' k nič, kar povzema zapis: <latex>\Delta t \to 0</latex>. Če bo tako, se bo nekaj limitnega dogajalo tudi s kvocientom <latex>\Delta f/\Delta t</latex>. Ko se bo manjšal imenovalec <latex>\Delta t</latex>, se bo z njim manjšal tudi števec <latex>\Delta f</latex>, in upamo lahko, da bo k neki vrednosti limitiral tudi njun kvocient. Vrednost, h kateri stremi, imenujemo ''odvod funkcije'' <latex>f</latex> ob času <latex>t</latex>. Odvod pišemo takole: |
Redakcija: 19:13, 12. julij 2010
Imejmo časovno funkcijo
Znak »lim« je okrajšava za limito, znak razlike »Δ« pa preide v diferencialni znak »d«. Novi, infinitezimalni količini dt in df sta diferenciala neodvisne in odvisne spremenljivke. Ker je odvod funkcije f v splošnem tudi funkcija, se za odvod uporablja tudi nekvocientni zapis »f′«. Diferencial df določa torej produkt odvoda f′ in diferenciala dt.
Najpreprostejša je konstantna funkcija: g(t) = C. Upodablja jo premica, ki je vzporedna abscisni osi. Pri vsakem intervalu Δt je Δg = 0, odvod konstante je nič. Odvod linearne funkcije h(t) = kt + n je h′ = k, saj je Δh = kΔt; o drugih več kasneje. Izpostavimo tudi nekaj lastnosti odvoda, te izhajajo iz definicije: (af)′ = af′ in (f + g)′ = f′ + g′ ter f(g)′ = f′g′.
Podpoglavja:
5.2 Kako analizirati prehodni pojav | 5.3.1 Časovni odvodi in diferenciali v elektrotehniki |