Iz e-ELEKTROTEHNIKA plus
(Primerjava redakcij)
(5 intermediate revisions not shown) | |||
Vrstica 1: | Vrstica 1: | ||
- | Imejmo časovno funkcijo <latex>f(t)</latex>, ki podaja napetost, morda moč, tok, naboj ali energijo (slika | + | [[Slika:eele_slika_visji_092.svg|thumb|Slika 92: K opredelitvi odvoda časovne funkcije v trenutku <latex>t</latex>, ko prirastek <latex>\Delta t</latex> limitira k nič.]] |
+ | Imejmo časovno funkcijo <latex>f(t)</latex>, ki podaja napetost, morda moč, tok, naboj ali energijo (slika 92). Izberimo bližnja trenutka <latex>t</latex> in <latex>t+\Delta t</latex>. Upati smemo, da si bosta blizu tudi funkcijski vrednosti <latex>f(t)</latex> in <latex>f(t+\Delta t)</latex>. Prirastek <latex>\Delta f=f(t+\Delta t)-f(t)</latex> je pomemben, verjetno pa tudi kvocient <latex>\Delta f/\Delta t</latex>, ki ugotavlja hitrost spreminjanja funkcije <latex>f</latex>. Informacija o njej bo najboljša takrat, ko bo interval <latex>\Delta t</latex> kar najkrajši, ko bo <latex>\Delta t</latex> ''limitiral'' k nič, kar povzema zapis: <latex>\Delta t \to 0</latex>. Če bo tako, se bo nekaj limitnega dogajalo tudi s kvocientom <latex>\Delta f/\Delta t</latex>. Ko se bo manjšal imenovalec <latex>\Delta t</latex>, se bo z njim manjšal tudi števec <latex>\Delta f</latex>, in upamo lahko, da bo k neki vrednosti limitiral tudi njun kvocient. Vrednost, h kateri stremi, imenujemo ''odvod funkcije'' <latex>f</latex> ob času <latex>t</latex>. Odvod pišemo takole: | ||
Vrstica 5: | Vrstica 6: | ||
- | Znak »<latex>\mathop {\lim }</latex>« je okrajšava za ''limito'', znak razlike » | + | Znak »<latex>\mathop {\lim }</latex>« je okrajšava za ''limito'', znak razlike »<latex>\Delta</latex>« pa preide v ''diferencialni'' znak »<latex>{\mathrm{d}}</latex>«. Novi, infinitezimalni količini <latex>{\mathrm{d}}t</latex> in <latex>{\mathrm{d}}f</latex> sta ''diferenciala'' neodvisne in odvisne spremenljivke. Ker je odvod funkcije <latex>f</latex> v splošnem tudi funkcija, se za odvod uporablja tudi nekvocientni zapis »<latex>f^\prime</latex>«. Diferencial <latex>{\mathrm{d}}f</latex> določa torej produkt odvoda <latex>f^\prime</latex> in diferenciala <latex>{\mathrm{d}}t</latex>. |
- | Najpreprostejša je konstantna funkcija: | + | Najpreprostejša je konstantna funkcija: <latex>g(t)=C</latex>. Upodablja jo premica, ki je vzporedna abscisni osi. Pri vsakem intervalu <latex>\Delta t</latex> je <latex>\Delta g=0</latex>, odvod konstante je nič. Odvod linearne funkcije <latex>h(t)=kt+n</latex> je <latex>h^\prime = k</latex>, saj je <latex>\Delta h =k \Delta t</latex>; o drugih več kasneje. Izpostavimo tudi nekaj lastnosti odvoda, te izhajajo iz definicije: <latex>(af)^\prime = af^\prime</latex> in <latex>(f+g)^\prime = f^\prime+g^\prime</latex> ter <latex>f(g)^\prime = f(g^\prime)</latex>. |
{{Hierarchy footer}} | {{Hierarchy footer}} |
Trenutna redakcija s časom 13:15, 15. avgust 2010
Imejmo časovno funkcijo
Podpoglavja:
5.2 Kako analizirati prehodni pojav | 5.3.1 Časovni odvodi in diferenciali v elektrotehniki |