|
|
Vrstica 42: |
Vrstica 42: |
| | | |
| Pojav je podoben, kot ga poznamo pri drugih nihanjih. Tudi neuravnoteženo kolo avtomobila povzroča pri določeni hitrosti (številu vrtljajev kolesa) bistveno močnejše tresenje avtomobila kot pri večji ali manjši hitrosti. '''Vsiljeno''' nihanje mehanskih sistemov s frekvenco, ki je enaka frekvenci '''lastnega nihanja''' sistema, lahko vodi tudi v razpad sistema. Popolnoma nov, kilometer dolg viseči most v ameriški zvezni državi Washington, so močni sunki vetra leta 1940 pognali v lastno nihanje, ki je most spektakularno sesulo v reko. | | Pojav je podoben, kot ga poznamo pri drugih nihanjih. Tudi neuravnoteženo kolo avtomobila povzroča pri določeni hitrosti (številu vrtljajev kolesa) bistveno močnejše tresenje avtomobila kot pri večji ali manjši hitrosti. '''Vsiljeno''' nihanje mehanskih sistemov s frekvenco, ki je enaka frekvenci '''lastnega nihanja''' sistema, lahko vodi tudi v razpad sistema. Popolnoma nov, kilometer dolg viseči most v ameriški zvezni državi Washington, so močni sunki vetra leta 1940 pognali v lastno nihanje, ki je most spektakularno sesulo v reko. |
- |
| |
- |
| |
- |
| |
- | == Resonančna frekvenca ==
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Frekvenco '''vsiljenega''' nihanja, pri kateri je amplituda nihanja energije v zaporednem nihajnem krogu bistveno '''večja''' kot pri drugih frekvencah, imenujemo '''resonančna'''<ref>resonare, lat. = odmevati, skupaj nihati</ref> frekvenca ('''''f''<sub>r</sub>''').
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | Resonančno frekvenco izračunamo iz '''enakosti reaktanc''' nihajnega kroga pri resonančni frekvenci:
| |
- |
| |
- |
| |
- | <latex>{\omega _{\rm{r}}}L\, =\, \frac{1}{{\omega _{\rm{r}}}C}</latex>
| |
- |
| |
- | oziroma
| |
- |
| |
- | <latex>2\pi \,{f_{\rm{r}}}L \,= \,\frac{1}{2\pi {f_{\rm{r}}}C}</latex>
| |
- |
| |
- | in od tod
| |
- |
| |
- | <latex>{f_{\rm{r}}} \,= \,\frac{1}{2\pi \sqrt {LC} }|||(Hz)</latex>
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Resonančna frekvenca zaporednega nihajnega kroga je '''obratno sorazmerna''' z geometrično sredino '''induktivnosti ''L''''' in '''kapacitivnosti''' kroga '''''C''''' (√''LC'').
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | Resonančna frekvenca '''vsiljenega''' nihanja je enaka frekvenci '''lastnega''' nihanja '''nedušenega''' nihajnega kroga, enačbo za računanje frekvence lastnega oziroma vsiljenega resonančnega nihanja pa imenujemo '''Thomsonova'''<ref>Thomson William, Lord Kelvin, angleški fizik, 1824 – 1907 </ref> enačba.
| |
- |
| |
- |
| |
- | Izračunajmo resonančno frekvenco nihajnega kroga iz poskusa 7.3.1:
| |
- |
| |
- |
| |
- | <latex>{f_{\rm{r}}}\, =\, \frac{1}{2\pi \sqrt {LC} }\, =\, \frac{1}{2\pi \sqrt {38 \,\cdot\, {10}^{ - 3} \,\cdot\, 47\, \cdot \,{10}^{ - 9}} }\, =\, 3768\,{\rm{Hz}}</latex>
| |
- |
| |
- |
| |
- | Za zaporedni nihajni krog pri '''''f''''' = '''''f''<sub>r</sub>''' torej velja:
| |
- |
| |
- |
| |
- | <latex>{X_{L{\rm{r}}}}\, =\, X_{C{\rm{r}}}\,\,{\rm{;}}\,\,\,\,\,\,{Z_{\rm{r}}}\, =\, R\,\,{\rm{;}}\,\,\,\,\,\,{I_{\rm{r}}}\, =\, {I_{\rm{m}}} \,= \,\frac{U}{R}\,\,{\rm{;}}\,\,\,\,\,\,{Q_{L{\rm{r}}}} \,=\, {Q_{C{\rm{r}}}}\,\,{\rm{;}}\,\,\,\,\,\,\varphi\, = \,0\,\,\,\,\,{\rm{in}}\,\,\,\,\,{S_{\rm{r}}}\, = \,P</latex>
| |
- |
| |
- |
| |
- |
| |
- |
| |
- | == Kakovost zaporednega nihajnega kroga (''Q'') ==
| |
- |
| |
- |
| |
- | Spoznali smo, da se pri '''vsiljenem''' nihanju pri '''resonančni''' frekvenci izmenjuje energija med kondenzatorjem in tuljavo z največjo intenzivnostjo in da je za vzdrževanje vsiljenega nihanja potrebno kriti izgube energije v realnem kondenzatorju in tuljavi z dovajanjem energije iz izvora napetosti. Čim kakovostnejša sta kondenzator in tuljava, tem manjše bodo izgube in manj energije bo potrebno za vzdrževanje nihanja energije v nihajnem krogu.
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Razmerje '''moči nihanja''' med kondenzatorjem in tuljavo pri '''resonančni''' frekvenci (''Q<sub>L''r</sub> = ''Q<sub>C''r</sub>) in '''izgubne moči''' (''P'') določa '''kakovost''' zaporednega nihajnega kroga.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | <latex>Q\, =\, \frac{Q_{L{\rm{r}}}}{P}\, = \,\frac{Q_{C{\rm{r}}}}{P} \,=\, \frac{{I^2} \,\cdot\, {X_{L{\rm{r}}}}}{{I^2}\, \cdot\, R}\, =\, \frac{{I^2}\, \cdot \,{X_{C{\rm{r}}}}}{{I^2} \,\cdot\, R}</latex>
| |
- |
| |
- | oziroma po ureditvi
| |
- |
| |
- | <latex>Q\, = \,\frac{X_{C{\rm{r}}}}{R}\, =\, \frac{X_{L{\rm{r}}}}{R}</latex>
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Kakovost zaporednega nihajnega kroga je '''premo sorazmerna''' z '''reaktancama''' nihajnega kroga pri resonančni frekvenci in '''obratno sorazmerna''' z '''izgubno upornostjo''' tuljave in kondenzatorja.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | '''Primer:'''
| |
- | <primer>
| |
- | Kolikšna je kakovost zaporednega nihajnega kroga, v katerem je induktivnost tuljave 20 mH in ohmska upornost ovojev tuljave 10 Ω pri resonančni frekvenci 5 kHz? Izgube v kondenzatorju in izvoru so v primerjavi s tuljavo dovolj majhne, da jih lahko zanemarimo.|||
| |
- |
| |
- | <latex>Q \,= \,\frac{{\omega _{\rm{r}}}L}{R}\, =\, \frac{2\pi {f_{\rm{r}}}L}{R}\, =\, \frac{2\pi \, \cdot\, 5 \,\cdot \,{{10}^3}\, \cdot\, 20 \,\cdot \,{10}^{ - 3}}{10}\, =\, {\rm{62,8}}</latex>
| |
- |
| |
- |
| |
- | V danem primeru je moč na kondenzatorju in tuljavi 62,8 krat večja od moči, ki jo izvor napetosti potrebuje za vzdrževanje nihanja, kar je primer relativno '''dobre''' kakovosti nihajnega kroga. Sl. 7.3.6 pa prikazuje časovni potek moči in energije v nihajnem krogu '''slabe''' kakovosti.
| |
- |
| |
- |
| |
- | [[Image:eele_slika_7_3_6.svg|thumb|right|Slika 7.3.6: Časovni potek moči v nihajnem krogu slabe kakovosti]]
| |
- | </primer>
| |
- |
| |
- |
| |
- |
| |
- | == Frekvenčna karakteristika toka zaporednega nihajnega kroga ==
| |
- |
| |
- |
| |
- | Iz oblike frekvenčnega poteka (karakteristike) toka lahko razberemo še eno, v bistvu najpomembnejšo lastnost zaporednega nihajnega kroga:
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Zaporedni nihajni krog prepušča '''zelo dobro''' tok '''resonančne''' frekvence in frekvenc, ki so resonančni '''blizu''', toke '''višjih''' in '''nižjih''' frekvenc pa močno '''duši'''.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | Če bi namesto izvora čiste sinusne napetosti na nihajni krog priključili izvor iz množice napetosti '''različnih frekvenc sestavljene''' napetosti, bi v nihajnem krogu imeli predvsem tok '''resonančne''' frekvence in toke, katerih frekvence so '''blizu resonančni'''.
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Zaporedni nihajni krog je '''pasovno prepustni''' frekvenčni '''filter'''.
| |
- | *Lastnost nihajnega kroga, da iz množice tokov različnih frekvenc »izbira« in prepušča toke le določenih frekvenc, imenujemo '''selektivnost'''<ref>lat. izbirnost</ref>.
| |
- | *Čim '''ožja''' je frekvenčna karakteristika in čim '''strmejši''' so njeni boki, tem večja je selektivnosti zaporednega nihajnega kroga.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | Pravkar ugotovljena lastnost nihajnega kroga omogoča radijskim in TV sprejemnikom, da iz množice signalov, ki jih sprejema antena, izločijo le želenega. Sprejemniki z boljšo selektivnostjo bolje ločijo želeni signal od neželenega (ki ga ne želimo poslušati).
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Področje frekvenc, katerih toke zaporedni nihajni krog dobro '''prevaja''', imenujemo '''prepustni frekvenčni''' pas nihajnega kroga ('''''B''''')<ref>po IEC, angl. band width</ref> (slika 7.3.7).
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | Bolj točno je prepustni frekvenčni pas zaporednega nihajnega kroga določen na naslednji način:
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *'''Prepustni''' frekvenčni '''pas''' zaporednega nihajnega kroga je območje frekvenc, v katerem '''moč''' v nihajnem krogu ne pade '''pod''' '''''P''<sub>r</sub>''' ⁄ '''2''' oziroma tok v nihajnem krogu '''ni manjši''' od '''''I''<sub>r</sub>''' ⁄ '''√2'''.
| |
- | *Širina prepustnega frekvenčnega pasu '''''B''''' je določena z razliko '''mejnih frekvenc''' prepustnega frekvenčnega pasu '''''f''<sub>mzg</sub>''' in '''''f''<sub>msp</sub>'''.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | [[Image:eele_slika_7_3_7.svg|thumb|right|Slika 7.3.7: Frekvenčni prepustni pas nihajnega kroga (prepustnega filtra)]]
| |
- |
| |
- | <latex>{B \,=\, {f_{\rm{mzg}}}\, -\, {f_{\rm{msp}}}}|||(Hz)</latex>
| |
- |
| |
- |
| |
- | Enačbo za neposredno računanje širine frekvenčnega pasu ''B'' dobimo iz razmerja tokov pri resonančni in mejni frekvenci. Pot do enačbe je nekoliko zahtevnejša, zato napišimo le rezultat:
| |
- |
| |
- |
| |
- | <latex>{B \,= \,\frac{f_{\rm{r}}}{Q}}|||(Hz)</latex>
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Širina prepustnega frekvenčnega pasu zaporednega nihajnega kroga je '''premo sorazmerna''' z '''resonančno frekvenco''' in '''obratno sorazmerna''' s '''faktorjem kakovosti''' nihajnega kroga.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | Oblika frekvenčne karakteristike ni ravno simetrična glede na resonančno frekvenco, toda za faktor kakovosti '''''Q'' > 10''' velja, da je prepustni pas glede na resonančno frekvenco praktično '''simetričen'''.
| |
- |
| |
- |
| |
- | '''Primer:'''
| |
- |
| |
- | <primer>
| |
- | Izračunaj širino frekvenčnega prepustnega pasu ''B'', mejni frekvenci ''f''<sub>1</sub> in ''f''<sub>2</sub> ter toke pri resonančni in mejnih frekvencah za nihajni krog iz poskusa 7.3.1 (''f''<sub>r</sub> = 3768 Hz, ''R''<sub>t</sub> = 23 Ω).|||
| |
- |
| |
- | <latex>Q \,=\, \frac{X_{L{\rm{r}}}}{R}\, = \,\frac{2\pi {f_{\rm{r}}}L}{R}\, = \,\frac{2\pi \, \cdot \,3768 \,\cdot\, 38\, \cdot \,{{10}^{ - 3}}}{27\, +\, 23}\, = \,18</latex>
| |
- |
| |
- | <latex>B \,=\, \frac{f_{\rm{r}}}{Q}\, = \,\frac{3768}{18}\, =\, 209\,{\rm{Hz}}</latex>
| |
- |
| |
- | <latex>{f_{\rm{msp}}} \,\approx \,{f_{\rm{r}}} \,-\, \frac{B}{2} \,=\, 3768\, - \,104\, = \,3664\,{\rm{Hz}}</latex>
| |
- |
| |
- | <latex>{f_{\rm{mzg}}}\, \approx \,{f_{\rm{r}}}\, +\, \frac{B}{2}\, =\, 3768 \,+\, 104\, =\, 3872\,{\rm{Hz}}</latex>
| |
- |
| |
- | <latex>{I_{\rm{r}}} \,=\, \frac{U}{Z_{\rm{r}}}\, =\, \frac{U}{R}\, =\, \frac{2}{27\, +\, 23} \,=\, 40\,{\rm{mA}}</latex>
| |
- |
| |
- | <latex>{I_1}\, =\, {I_2}\, =\, \frac{I_{\rm{r}}}{\sqrt 2 }\, =\, \frac{40}{\rm{1,41}}\, =\, {\rm{28,4\,mA}}</latex>
| |
- | </primer>
| |
- |
| |
- |
| |
- | Pred naslednjim poskusom izračunajmo faktorje kakovosti nihajnega kroga iz poskusa 7.3.1 še pri upornosti upora 56 Ω in 150 Ω. V obeh primerih upoštevajmo ohmsko upornost tuljave (''R''<sub>t</sub> = 23 Ω).
| |
- |
| |
- |
| |
- | <latex>{Q_2}\, = \,\frac{X_{L{\rm{r}}}}{{R_2} \,+\, {R_{\rm{t}}}} \,=\, \frac{2\pi \, \cdot\, 3768\, \cdot\, 38 \,\cdot \,{10}^{ - 3}}{56 \,+\, 23}\, =\, {\rm{11,4}}</latex>
| |
- |
| |
- | <latex>{Q_3}\, =\, \frac{X_{L{\rm{r}}}}{{R_3} \,+\, {R_{\rm{t}}}} \,=\, \frac{2\pi \, \cdot\, 3768\, \cdot\, 38 \,\cdot \,{10}^{ - 3}}{150\, +\, 23}\, = \,{\rm{5,2}}</latex>
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Z naraščajočo '''delovno upornostjo''' kakovost nihajnega kroga '''pada'''.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | <poskus>
| |
- | '''Poskus 7.3.2:'''
| |
- |
| |
- | Ponovimo poskus 7.3.1 tako, da namesto upora z upornostjo 27 Ω vključimo v krog najprej upor z upornostjo 56 Ω in potem še upor z upornostjo 150 Ω, torej tako, da pri stalni napetosti in frekvenci zmanjšujemo kakovost nihajnega kroga. Rezultat meritev prikazuje grafično slika 7.3.8.
| |
- |
| |
- |
| |
- | [[Image:eele_slika_7_3_8.svg|thumb|right|Slika 7.3.8: Vpliv kakovosti na obliko frekvenčne karakteristike toka zaporednega nihajnega kroga]]
| |
- |
| |
- | *Večja ohmska upornost povzroči manjši resonančni tok in širši prepustni pas nihajnega kroga.
| |
- | </poskus>
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Čim večja je '''kakovost''' nihajnega kroga, tem večji je resonančni '''tok''', tem ožji je frekvenčni '''prepustni pas''' in tem boljša je '''selektivnost''' zaporednega nihajnega kroga.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- |
| |
- | == Frekvenčna karakteristika impedance zaporednega nihajnega kroga ==
| |
- |
| |
- |
| |
- | Frekvenčno karakteristiko toka (slika 7.3.7) smo dobili pri konstantni napetosti izvora v krogu, zato bi pripadajočo frekvenčno karakteristiko impedance ali admitance lahko dobili že po Ohmovem zakonu:
| |
- |
| |
- |
| |
- | <latex>Z\left( f \right)\, = \,\frac{U}{I\left( f \right)}|||(Ω)</latex>
| |
- |
| |
- | in
| |
- |
| |
- | <latex>Y\left( f \right) \,=\, \frac{I\left( f \right)}{U} \,=\, \frac{1}{Z\left( f \right)}</latex>
| |
- |
| |
- |
| |
- | [[Image:eele_slika_7_3_9.svg|thumb|right|Slika 7.3.9: Frekvenčni karakteristiki polne upornosti in prevodnosti zaporednega nihajnega kroga]]
| |
- |
| |
- | Slika 7.3.9 pravzaprav ne prinaša novosti – le nazorneje prikazuje spoznanja o lastnostih '''zaporedne''' vezave upora, tuljave in kondenzatorja v izmeničnem krogu. »Novost« je predvsem to, da nihajni krogi koristijo lastnosti zaporednega ''RLC'' kroga predvsem pri '''resonančni''' frekvenci.
| |
- |
| |
- |
| |
- |
| |
- | == Napetostna resonanca ==
| |
- |
| |
- |
| |
- | <poskus>
| |
- | '''Poskus 7.3.3:'''
| |
- |
| |
- | V nihajnem krogu iz poskusa 7.3.1 izmerimo napetosti v krogu pri resonančni frekvenci (sl. 7.3.10).
| |
- |
| |
- |
| |
- | [[Image:eele_slika_7_3_10.svg|thumb|right|Slika 7.3.10]]
| |
- |
| |
- | *Padec napetosti na delovni upornosti kroga (če upoštevamo tudi izgubni upornosti tuljave in kondenzatorja) je približno enaka napetosti izvora.
| |
- | *Padca napetosti na tuljavi in kondenzatorju sta enaki in veliko večji od napetosti izvora.
| |
- | </poskus>
| |
- |
| |
- |
| |
- | Kazalčni diagram izmeničnega kroga z zaporedno vezavo upora, tuljave in kondenzatorja<ref>Osnove elektrotehnike 2, str ...</ref> dopušča možnost večjih napetosti na tuljavi in kondenzatorju od napetosti izvora, zato si oglejmo le odvisnost te razlike. Pri znanih dejstvih
| |
- |
| |
- |
| |
- | <latex>{Z_{\rm{r}}}\, =\, R\,\,{\rm{;}}\,\,\,\,\,{I_{\rm{r}}} \,= \,\frac{U}{Z_{\rm{r}}}\, =\, \frac{U}{R}</latex>
| |
- |
| |
- | in
| |
- |
| |
- | <latex>{U_{L{\rm{r}}}}\, =\, {I_{\rm{r}}}{X_{L{\rm{r}}}}\, =\, \frac{U}{R}{X_{L{\rm{r}}}}\, =\, U\frac{X_{L{\rm{r}}}}{R}</latex>
| |
- |
| |
- | ter z upoštevanjem
| |
- |
| |
- | <latex>\frac{X_{L{\rm{r}}}}{R} \,=\, \frac{X_{L{\rm{r}}}}{R}\, =\, Q</latex>
| |
- |
| |
- | dobimo
| |
- |
| |
- | <latex>{U_{L{\rm{r}}}} \,=\, {U_{C{\rm{r}}}} \,=\, QU|||(V)</latex>
| |
- |
| |
- |
| |
- | <pomembno>
| |
- | *Napetosti na tuljavi in kondenzatorju v zaporednem nihajnem krogu sta pri resonančni frekvenci '''Q - krat večji''' od napetosti '''izvora''' ali napetosti na delovni upornosti kroga.
| |
- | *Zaradi pojava '''ojačevanja napetosti''' imenujemo resonanco zaporednega nihajnega kroga '''napetostna''' resonanca.
| |
- | </pomembno>
| |
- |
| |
- |
| |
- | '''Primer:'''
| |
- |
| |
- | <primer>
| |
- | Zaporedni nihajni krog ima pri resonančni frekvenci 5 kHz reaktanci ''X<sub>L</sub>'' = ''X<sub>C</sub>'' = 100 Ω in izgubno delovno upornost ''R'' = 2 Ω. Priključen je na generator izmenične napetosti 10 V / 5 kHz. Določi tok in moč delovanja izvora, fazni kot, padce napetosti, kakovost, širino prepustnega frekvenčnega pasu ter tok in moč izvora pri mejnih frekvencah nihajnega kroga.|||
| |
- |
| |
- | <latex>I\, =\, \frac{U}{R} \,=\, \frac{10}{2}\, =\, \rm{5\, A}</latex>
| |
- |
| |
- | <latex>\varphi \, = \,{\rm{0}^{\,\circ}}</latex>
| |
- |
| |
- | <latex>P\, =\, UI \,=\, 10\, \cdot\, 5\, =\, \rm{50\, W}</latex>
| |
- |
| |
- | <latex>{U_R} \,=\, I \,\cdot\, R \,= \,5\, \cdot\, 2\, =\, \rm{10 \,V}</latex>
| |
- |
| |
- | <latex>{U_L}\, =\, I\, \cdot\, {X_L} \,=\, 5\, \cdot \,40 \,= \,\rm{200 \,V}</latex>
| |
- |
| |
- | <latex>{U_C} \,=\, I\, \cdot \,{X_C}\, = \,5\, \cdot\, 40 \,= \,\rm{200 \,V}</latex>
| |
- |
| |
- | <latex>Q \,=\, \frac{X_L}{R}\, = \,\frac{X_C}{R}\, =\, \frac{40}{2}\, =\, \rm{20}</latex>
| |
- |
| |
- | <latex>B\, =\, \frac{f_{\rm{r}}}{Q}\, =\, \frac{5000}{20}\, =\, \rm{250 \,Hz}</latex>
| |
- |
| |
- | <latex>{I_{\rm{msp}}}\, =\, {I_{\rm{mzg}}} \,=\, \frac{I}{\sqrt 2 }\, =\, \frac{5}{\rm{1,41}} \,=\, \rm{3,5\, A}</latex>
| |
- |
| |
- | <latex>{P_{\rm{msp}}}\, =\, {P_{\rm{mzg}}} \,=\, \frac{P}{2} \,=\, \frac{50}{2} \,=\, \rm{25\, W}</latex>
| |
- | </primer>
| |
- |
| |
- |
| |
- | Napetostno resonanco koristno uporabljamo na področju elektronike, predvsem v radijski, TV in krmilni tehniki. Na področju '''energetike''', kjer so večje napetosti in moči izvorov, moramo biti pri konstrukciji električnih naprav in sistemov previdni. Delovanje le-teh na frekvencah, ki so blizu ali enake njihovi resonančni frekvenci, je lahko vzrok nepričakovano visokih napetosti, '''nevarnih''' za merilnike, izolacijo in tudi za človeka.
| |
- |
| |
- |
| |
- | <references />
| |
| | | |
| | | |
| {{Hierarchy footer}} | | {{Hierarchy footer}} |